

B.TECH SECOND YEAR SYLLABUS CHEMICAL ENGINEERING Batch 2022

Sl. No.	I. No. Course Subject Course Name		L	Т	Р	Credits	
1	IC IC2101 Numerical Methods & Transform Calculus		4	0	0	4	
2	IC	IC2102	Fluid Mechanics & Multiphase Flow		1	0	4
3	IC	IC2103	Object Oriented Programming	2	0	3	4
4	DC	CH2101	Chemical Process Calculations	3	1	0	4
5	DC	CH2102	Particle Technology	3	0	0	3
6	DP	CH2103	Fluid Flow Lab	0	0	3	2
Extra 7 Academic Activity EA2101		EAA III	0	0	6	P/F	
	Total				2	6	21

3rd SEMESTER

4th SEMESTER

Sl. No.	Course type	Subject code	Course Name	L	Т	Р	Credits
1	DC	CH2201	Heat Transfer	3	1	0	4
2	DC	CH2202	Chemical Engineering Thermodynamics	4	0	0	4
3	DC	CH2203	Chemical Reaction Engineering-I	3	1	0	4
4	DC	CH2204	Mass Transfer-I	3	1	0	4
5	DP	CH2205	Heat Transfer Lab	0	0	3	2
6	DP	CH2206	Particle Technology & Fuel Lab	0	0	3	2
7	Extra Academic Activity	EA2201	EAA IV	0	0	0	P/F
	Total						20

3rd SEMESTER

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Core	IC2101	Numerical Methods & Transform Calculus	4	0	0	4

Pre-Requisites: Calculus, Linear Algebra, and Differential equations

Cours	ourse Objective								
1. 2.	 This course is to introduce the basic concepts of numerical methods for a variety of problems such as algebraic equations, linear systems of equations, approximation, ordinary differential equations. To make the students understand the basic concepts of Laplace and Fourier transforms, Fourier series and the applications of these transform techniques in solving initial and boundary value problems. 								
Learn	Learning Outcomes								
1.	e end of the course, the student will be able to: Understand the numerical error and applicability of a Find roots of a nonlinear equation, and interpolate a f and iterative methods for solving systems of linear eq Identify different methods to find the approximate into Solve ordinary and partial differential equations by fin Solve initial and boundary value problems by using La Understand the approximation of a function in terms of Topics to be Covered	unction and analyze the variety of direct uations. egration by quadrature rules. nite difference methods aplace and Fourier transform techniques.							
No.	Topics to be Covered	Learning Outcome							
1.	 Numerical Methods: A. Finding roots of equations: Bisection, Regula- falsi, Newton-Raphson, secant and fixed-point iteration techniques. Lagrange and Newton divided differences methods. Numerical differentiation. Numerical integration: Rectangle, Trapezoidal and Simpson's rules, Composite rules. B. System of Linear Equations: Gaussian elimination, Gauss-Jordan method, LU decomposition, Iterative methods: Gauss-Seidel and Gauss-Jacobi, Eigenvalue problems: power method. Numerical Solution of ODE: Taylor's, Euler's, Modified-Euler, Runge-Kutta methods. 	The student will be able to understand numerical error and applicability of a particular method to find roots of a nonlinear equations, system of linear equations, interpolation of a function, numerical integration, and ODEs.							

2.	Transform Calculus: A. Laplace Transforms: Definition, linearity property, conditions for existence, shifting properties, Laplace transform of derivatives and integrals, unit step function, Dirac-delta and error function, differentiation and integration of transforms, convolution theorem, inversion, periodic functions, evaluation of integrals by Laplace transforms, solution of initial and boundary value problems.	and boundary value problems by using Laplace and Fourier transform
	B. Fourier Series and Fourier Transforms: Fourier series representation of a function and its convergent properties, half range series, sine and cosine series, Fourier integral representation of a function, Parseval's identity. Fourier transform, Fourier sine and cosine transforms, linearity, scaling, shifting properties, convolution theorem, Applications to initial and boundary value problems.	
	C. Introduction to Machine Learning: Data, models and learning, empirical risk minimization, parameter estimation.	

Numerical Methods:

Text Books:

- 1. S. D. Conte and Carl de Boor, Elementary Numerical Analysis- An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980.
- 2. K. Atkinson, An Introduction to Numerical Analysis (2nd Edition), John-Wiley & Sons, 1989.
- 3. E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999).

References:

1. S.S. Sastry, Introductory Methods of Numerical Analysis - Prentice Hall of India

Transform Calculus:

Text Books:

- 1. R. K.Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa publisher
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley publisher.

References:

- 1. W. Feller, An introduction to Probability theory and its applications
- 2. Peter V, O'Neil, Advanced Engineering Mathematics, 6th edition.

Cours Type		Course Code	Name of Course	L	Т	Р	Credit						
IC		CH20002	Fluid Mechanics & Multiphase Flow	3	1	0	4						
Cours	Course Objective												
	1. To understand the basic concept of fluid flow and its application to chemical process industries including pipe flow and fluid machinery.												
Learni	Learning Outcomes												
1. E m 2. Io 3. F	 At the completion of this course, every student should be able to: 1. Explain the basic concepts in fluid mechanics; describe the physics and formulate mathematical descriptions of viscous flows. 2. Identify the fundamental concepts in boundary layer theory, and turbulence. 3. Formulate physical model and mathematic model to solve typical fluids problems of engineering importance. 												
Unit No.	Тој	pics to be Cover	ed	Learning Outcome									
Section	A:												
1.	met Stre Stre	thods of descr eamline and str	Lagrangian and Eulerian ription; Velocity Field: eam function, Vorticity, eology: Newtonian/non-			e introdu properties	ced to various						
2.	Coi	cous/Inviscid, mpressible/ ernal/External, R	Laminar/Turbulent, Incompressible, otational/Irrotational.	Student field.	s will acc	quaint wi	th various flow						
3.			ssure variation in static capillary hydrostatics.	Student on statio		ive a stro	ong foundation						
4.	usin & Inco dev	ng integral contr Bernoulli ompressible veloped laminar f	and momentum balance ol volume method, Euler equations, Internal Viscous Flow. Fully low in pipes, Couette and en Poiseulle Equation.	Students will be able to apply Euler and Bernouli equation to compute pressure drop, friction losses in flow systems of different configurations.									

5.	Eddy viscosity, Universal velocity profile; Skin and Form Friction, friction factor and friction factor versus Reynolds number relation, Calculation of Head Losses in pipes and fittings, Converging and diverging nozzles, Solution of single and multi-path pipe flow systems.	Students will be familiar with head losses in pipes, fittings, converging and diverging nozzles.
6.	Flow around immersed bodies, Drag and Lift, Drag coefficient.	Basic understanding and applications of external incompressible flow.
7.	Valves, Pumps, Compressors, Flow meters (Head/Area): Venturi, Orifice, Rotameter.	Students will be introduced to various flow measuring instruments and pumps.
Section	B:	
8.	Introduction to Hydrodynamics of Gas-liquid flow: Homogeneous flow model, Separated flow model, Bubble formation and dynamics, Mass bubbling and liquid entrainment.	Students will understand hydrodynamics of gas-liquid and liquid-liquid two-phase flow system.

- 1. Introduction to Fluid Mechanics by R. W. Fox & Alan T. McDonald, Wiley; 6th edition (2003).
- 2. Fundamentals of Multiphase Flow by C. E. Brennen, Cambridge University Press; 1st edition (2009).

References:

- 1. Fluid Dynamics and Heat Transfer by James G. Knudsen and Donald L. Katz, McGraw-Hill; First Edition (1958).
- 2. Coulson & Richardson's Chemical Engineering: Fluid Flow, Heat Transfer & Mass Transfer, Vol.1., Butterworth-Heinemann; 6th edition (1999).

Course Type	Course Code	Name of Course		L	Т	Р	Credit				
IC	IC2103	Object Oriented Programmi	ng	2	0	3	4				
Course O	Course Objective										
	 The fundamentals of object-oriented concepts, OO programming, and database concepts. Model real world problems with Object Oriented constructs and solve them. 										
Learning	Outcomes										
	 Analyse a given problem and model it using objects, inheritance, and other OO constructs. Implement a given OO model using the Python language. 										
Unit No.	Το	pics to be Covered		Lear	ning	Outco	me				
1.	programming: In object- oriented messages, encap	ncepts of object oriented ntroduction to the principles of programming (classes, objects, osulation, inheritance, exception handling, and object- ers).	Students will understand: the need for OOP, how the OO constructs help to decompose the complex problems.								
2.	Object design in	nplementation in a programming ++ or java or Python. (Currently,	Familiarize with Python basics, built-in data structures, functions, etc. Implement object oriented concepts using Python.								
3.	oriented data mo organization and	Conceptsusing PythoObject oriented database systems: Object oriented data model, query languages, storage organization and indexing techniques; object relational databases.Familiarize with mod creating Python appli- interact with a database				plicati					

- 1. Grady Booch, Object Oriented Analysis and Design, Addison-Wesley.
- 2. Programming Python: Powerful Object-Oriented Programming (4th Edition), Author: Mark Lutz, O'Reilly.

Course Type	Course Code	Name of Course	L	Т	Р	Credit					
DC	CH2101	Chemical Process Calculations	3	1	0	4					
Course (Course Objective										
This cours	This course aims to introduce the material and energy balances for chemical engineers.										
Learning	Learning Outcomes										
2. Und cher	 Learn the basic calculations and techniques used in chemical engineering problems. Understand the basics of material and energy balances and will be able to apply them to chemical processes. Understand the behaviour of liquid, gas and solids. 										
Unit No.	Topics to be Cove	red		Learn	ing Out	come					
1.	Numerical techniq energy balance equ	ues for solving material & ations.		uction in the second se		and energy					
2.		with and without chemical bypass, purge calculations, lculations.		g materia cal proce		e problems on					
3.	Vapor-liquid equil point calculation calculations.	ibrium: Bubble point, dew ons, phase envelope	Understand the properties of gas and liquids. Phase envelope diagrams.								
4.	reactions; fuel ca temperature; comp	with and without chemical lculations, adiabatic flame outer-based calculations for ychrometric calculations.	Solving energy balance problems on chemical process units.								
5		els (solid, liquid and gas): es and specifications.	Fuels and their properties.								

- 1. Himmelblau, D. M. and Riggs, J. B. (2012). Basic Principles and Calculations in Chemical Engineering. 8th Ed., PHI, Eastern Economy Edition.
- 2. Felder R.M. and Rousseau R.W., (2005), Elementary Principles of Chemical Processes, 3rd Ed., John Wiley & Sons.
- 3. Introduction to Material and Energy Balances, G V Rekliatis, John Wiley & Sons, 1983.

References:

1. Chemical Process Principles, Part I by O. A. Hougen, K. M. Watson and R. A. Ragatz

Туре	e Course Code	Name of Course	L	Т	Р	Credit
DC	CH2102	Particle Technology	3	0	0	3
Course	Objective					
01 2. T 3. T 4. T	f mechanical operation o enable students to olids. o provide students w ffecting size reduction o enable students to g	th the concept of unit process ons in the chemical process i understand the properties, st ith the importance of size re n and industrial size-reduction grasp the importance of separ lid, solid-liquid, and solid-g	ndustries orage, m duction, on equipt ration of	iixing, an actions in nent. solids an	d transpo nvolved,	ortation of bulk and parameters
Learnin	g Outcomes					
de 4. C	escriptions. Compare performance	yse unit operation equipm es of existing equipment ba				
Unit		unit operations. s to be Covered		Lea	rning Ou	
No.	Торіс	s to be Covered			rning Ou	ıtcome
	Торіс	s to be Covered mean particle size, Siz	mix solio Esti	lerstand ing and ds.	rning Ou the prop transpor	
No.	Topic Determinations of distribution equatio Principles and law Characteristics of i	s to be Covered mean particle size, Siz	mix solid Esti a mi g. Und s. type s, Und	erstand ing and ds. mate mea ixture. erstand es of size	rning Ou the prop transpor un/averag importau reductior	utcome perties, storage rtation of bull

4.	Principles of filtration, filtration equipment. Flow	Will understand different types of
	through packed and fluidized bed. Introduction to	mixing equipment for different
	storage and conveying, elevating equipment,	applications involving solid and fluid.
	hydraulic and pneumatic transport.	

1. McCabe, W., Smith, J., Harriott, P. Unit Operations of Chemical Engineering, McGraw Hill Education, 2017.

Reference:

1. Richardson, J. H., Harker, J.H., Backhurst, J.R., Coulson and Richardson's Chemical Engineering, Volume 2, 5th Edition: Particle Technology and Separation, Elsevier, 2006.

Course Type	e Course Code	Name of Course	L	Т	Р	Credit					
DP	CH2103	Fluid Flow Lab	0	0	3	2					
Course	Objective										
1. То јис	g engineering										
Learnin	Learning Outcomes										
 Estimate the friction and measure the frictional losses in fluid flow. Experiment with flow measurement devices like venturi meter and orifice meters. Predict the coefficient of discharge for flow through pipes. 											
Unit	Topics to be Co	vered		Learn	ing Ou	tcome					
1.	Bernoulli's expe	riment;				the course, the					
2	Flow through sq	uare and circular pipes.		perfor		periment on					
3	Nozzles; pipe fit	tings.			achiner	low equipment ies.					
4	Venturi meter, o	rifice meter and		-							
5	Horizontal V-no	tch.									
6	Packed bed.										
7	Rotameter.										
8	Pitot tube.										
9	Characteristics of	f centrifugal pump.									
10	Pipe flow Visco	meter.									
11		valves and fittings: Design stud ngs and piping networks.	ies on	s on							
12	Two phase flow	·									
13	-	id Systems: Mechanical design flange, reinforcement for ope	-								

- 1. Introduction to Fluid Mechanics by R. W. Fox & Alan T. McDonald, Wiley; 6th edition (2003).
- 2. Fundamentals of Multiphase Flow by C. E. Brennen, Cambridge University Press; 1st edition (2009).

4th SEMESTER

Cour Typ		Name of Course	L	Т	Р	Credit			
DC	CH2201	Heat Transfer	3 1 0 4						
Cours	se Objective								
n	nodes of heat transfe		s, gover	of the conduction, convection and radiation, governing equations relating to the rates of ntals.					
Learn	ing Outcomes								
C	convection and radia	the course, the students tion modes of heat trans nd the pertinent equations	fer. Stu	dents wi	ll be abl				
Unit No.	Topics to be Cove	ered		Ι	<i>l</i> earning	Outcome			
1.	Mechanisms of convection, and ra	heat flow - conduction diation.	/	Students will be introduced to different heat transfer mechanisms.					
2.	-	dy state one, two and thread the action equations in different							
3.	Dimensional anal convection.	ysis, forced and natur			ll be abl problems.	e to solve real time			
4.	Stefan Boltzman law, Kirchoff's Law, and their applications, black body, gray body, exchange of radiant heat between gray bodies. Furnaces, flame temperature, optimum thickness of insulation.			y, transfer. Students will be able to solve res. time radiation problems.					
5.	 Classification and design, metallic and non- metallic heat exchangers. Evaporators: Types and design features. Design of natural and forced circulation reboilers optimization of heat exchanger design; heat exchanger performance evaluation. Process design and performance evaluation of Double Pipe, Shell and Tube, Plate, Spiral Heat Exchangers; Process design data sheets, Heat pumps. 								

Text Books:

1. Process Heat Transfer by D. Q. Kern, McGraw-Hill Inc., US (1950).

2. Heat Transfer by J. P. Holman, McGraw Hill Education; 10th edition (2017).

3. Unit Operations by G. G. Brown, CBS PUBLISHERS AND DISTRIBUTORS PVT LTD (2005).

Reference Books:

1. Unit Operations of Chemical Engineering by W. L. McCabe, J. C. Smith and P. Harriott, McGraw Hill; 7th edition (2004).

2. Process Heat Transfer Principles & Applications by R.W. Serth, Academic Press, (2007).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	CH2202	Chemical Engineering Thermodynamics	3	1	0	4
Course (Dijective					
lav eq	ws of thermodynami	on relevant concepts in thermodyn c and their applications, property e activity coefficient, and reaction aspects.	estimation	n of real	fluids, v	vapor-liquid
Learning	Outcomes					
2. Co	ompute heat-work an	concepts of thermodynamics releved bubble point/ dew point calculatery by selecting appropriate mod	tions.	emical e	engineer	S.
Unit No.	Topics to be Cover]	Learnin	g Outco	ome	
	Review: Basic concepts and scope of thermodynamics; First and Second laws of thermodynamics. Carnot's theorem, and Entropy. Applications of first law to close and open systems; PVT relations; Equations of state.Understand the thermodynamics					
	Property estimation of real fluids: Thermodynamic potentials, Maxwell's relations, Gibbs free energy as generating function; Residual properties; Phase equilibrium; Thermodynamic phase diagram; Heat and work interconversion devices.					
	Vapor-liquid Equilibrium (VLE): Phase rule; simple models for VLE; Dew and bubble-point calculations; Flash calculations; Property estimation from VLE.Compute temperature and pressu Bubble point and Dew point.					1
	Solution thermodynamics: Properties of mixtures; Partial Molar properties; Fugacity; Ideal solutions; Excess properties; Activity coefficients; Models for excess Gibbs free energy.Apply thermodynamic principles f estimation of solution properties ar select system specific model					operties and
	equilibrium criteri Equilibrium consta	a to Chemical Reactions;		ion and		temperature e operating

6.	Introduction to statistical thermodynamics	Idea	of	statistical	behavior	of
			ns			

- 1. Chemical Engineering Thermodynamics by J. M. Smith, H. C. Van Ness and M. M. Abbott, M. T. Swihart, Eighth Edition, McGraw Hill (2018).
- 2. Chemical Engineering Thermodynamics by Y. V. C. Rao, Second Edition, University Press (2001).

References:

- 1. Chemical Engineering Thermodynamics by B. G. Kyle, Third Edition, Prentice Hall (1999).
- 2. Engineering Thermodynamics by P. K. Nag, Sixth Edition, McGraw Hill (2017).
- 3. Engineering and Chemical Thermodynamics by M. D. Koretsky, Second Edition, John Wiley and Sons (2012).

Course Type	Course Code	Nar	ne of Course	L	Т	Р	Credit		
DC	CH2203	-	nemical Reaction Engineering-I	4	0	0	4		
Course Ol	ojective								
	1. The objective of the course is to study reaction kinetics and design of ideal reactors for homogeneous reactions.								
Learning (Learning Outcomes								
 At the end of the course, the student will be able to 1. Learn how to interpret the kinetic data. 2. Design ideal reactors under isothermal and non-isothermal operations. 3. Study Residence Time Distribution and non-ideal reactor models. 									
Unit No.	Topics to be Cove	ered	Learning Outcome						
1.	Kinetics homogeneous read Interpretation of reactor data.		; reactor data.						
2.	design- Batch, flow and mixed	1 0	multiple reactions.						
3.	Non-isothermal reactors, steady multiplicity; R design.	state eactor	1						
4.	Non-ideal flow reactors, Residenc distribution.		Basics of non-idea reactors.	of non-ideal flow, tools and models for diagnosis as.					

- 1. Levenspiel O, Chemical Reaction Engineering, 3rd Edition, Wiley India (1999).
- 2. Fogler S H, Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall India (2015). **References:**
 - 1. Davis M E and Davis R J, Fundamentals of Chemical Reaction Engineering, 1st Edition, McGraw Hill (2003).
 - 2. Schmidt L D, The Engineering of Chemical Reactions, 2nd Edition, Oxford University Press (2005).
 - 3. Froment G F and Bischoff K B, Chemical Reactor Analysis and Design, 2nd Edition, John Wiley & Sons (1990).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	CH2204	Mass Transfer I	3	1	0	4

Course Objective

This course enables the students:

- 1. To acquire basic knowledge of mass transfer operation and its application.
- 2. To learn fundamental knowledge of mass transfer involved in various unit operations.
- 3. To design mass transfer processes and equipment.

Learning Outcomes

After the completion of this course, students will be to:

- 1. Explain the basic mechanism of mass transfer including diffusion and convective mass transfer.
- 2. Find the mass transfer coefficient and solve problems related to interphase mass transfer.
- 3. Explain the gas-liquid contacting process and solve related problems including Absorption.
- 4. Solve problems on VLE and problems related to design calculation of distillation columns.
- 5. Explain enhanced distillation.
- 6. Develop a process design for humidification and cooling.

Unit No.	Topics to be Covered	Learning Outcome
1.	Fundamentals of mass transfer: Diffusional mass transfer, mass transfer coefficients, steady state and unsteady state theories of mass transfer, interphase mass transfer, Whitman's two film theory and its variations, multiphase contacting equipments, concept of transfer unit, unified approach to staged processes.	Fundamental concept of mass transfer, design and problem solving.
2.	Distillation : Vapour-liquid Equilibrium, x-y, T-x-y, P-x-y and H-x-y diagrams; Henry's, Raoult's and Dalton's Laws; Ideal and Non-ideal solutions, Azeotropes; Relative Volatility; Flash Vaporization; Differential Distillation: Steam Distillation; Continuous Rectification â Staged Calculation using Ponchon-Savarit and McCabe-Thiele Methods; Complex/Multi-draw Configuration; Packed Distillation Column; Multicomponent Distillation; Azeotropic and Extractive Distillations; Performance Evaluation of Distillation Columns including Reboilers and Condensers.	Fundamental concept of Distillation, design and problem solving.

3.	Absorption: solubility, choice of solvent, concept of rate approach and stagewise approach, stagewise and continuous contact absorbers; rich and lean gasses; absorption with chemical reaction. Counter-current and co-current multistage operations, dilute and concentrated systems, process design and performance evaluation of absorbers.	Fundamental concept of Absorption, design and problem solving.
4.	Humidification/Dehumidification: Definitions, Psychrometric chart, Adiabatic saturation and wet- bulb temperatures, Adiabatic and non-adiabatic operations, Dehumidification, Mass and heat balances in bulk and at interfaces, Spray chamber, Cooling towers - counter-current, co-current and cross-current, Performance evaluation of cooling towers, Principles of air conditioning.	Fundamental concept of humidification, design and problem solving.

- 1. R. E. Treybal, Mass Transfer Operations, McGraw Hill Education 2017.
- 1. W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, McGraw Hill Education 2017.
- 2. E. I. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press 2009.

Reference:

- 1. J.F. Richardson, J. H. Harker, and J. R. Backhurst, Coulson & Richradson's Chemical Engineering, Volume 2 Butterworth-Heinemann 2002.
- 2. B.K. Dutta, Principles of Mass Transfer and Separation Processes, Prentice Hall India Learning Private Limited, 2006.

Cou Ty		Course Code	Name of Course	L	Т	Р	Credit			
D	Р	CH2205	Heat Transfer Lab	0	0	3	2			
Cours	Course Objective									
1.	1. Course aims to equip students with hands-on skills of important experiments on heat transfer.									
Learn	ning Ou	itcomes								
	 Do measurements of temperature and do heat transfer calculations. Carry out experiments, observe and analyze data for conduction, convection, and radiation problems. 									
Unit No.										
1.	of metal rod, overall heat transfer co-efficient in a vertical condenser, natural convection, critical heat flux, overall heat transfer co-efficient in horizontal condenser heat transfer co efficient in					transfer experim e data fo	of temperature calculations. ents, observe or conduction, tion problems.			

*Depends on number of student groups.

Text Book:

1. McCabe, W., Smith, J., Harriott, P. Unit Operations of Chemical Engineering, McGraw Hill Education, 2017.

Reference:

1. Richardson, J. H., Harker, J.H., Backhurst, J.R., Coulson and Richardson's Chemical Engineering, Volume 2, 5th Edition: Particle Technology and Separation, Elsevier, 2006.

Cou Ty		Course Code	Name of Course	L	Т	Р	Credit				
D	Р	CH2206	Particle Technology & Fuel Lab	0	0	3	2				
Cours	Course Objective										
	 Course aims to equip students with hands-on skills of important experiments on heat particle technology. An ability to identify, analyse and characterize the fuels. 										
Learn	ing Ou	itcomes									
	partic Under	les.	ry out experiments in mech		-		-				
Unit No.		Topics	to be Covered		Lea	rning Ou	ıtcome				
1	 Particle Technology Lab: Experiments on particles: Ball mill performance, roll crusher performance, performance of different types of classifiers, jaw crusher performance, determination of permeability, sampling, solid feeders' performance Fuel Lab: Kinematic viscosity by Dynamic viscosity, Calorific Value, Smoke & Flash point, Aniline point, Reid vapour pressure (RVP) 				derstand periment: erations rticles.		carry out echanical unit lving solid				

1. McCabe, W., Smith, J., Harriott, P. Unit Operations of Chemical Engineering, McGraw Hill Education, 2017.

Reference:

1. Richardson, J. H., Harker, J.H., Backhurst, J.R., Coulson and Richardson's Chemical Engineering, Volume 2, 5th Edition: Particle Technology and Separation, Elsevier, 2006